Zubair Ahmed, PhD
Professor of Otorhinolaryngology–Head & Neck Surgery and Ophthalmology, University of Maryland School of Medicine
UM-BILD Translational Project: Gene Therapy for Age-related Macular Degeneration
For more information about this technology, please contact the UM Ventures, Baltimore team.
Dr. Ahmed received his Bachelor and PhD degrees from the University of Punjab, Pakistan. He accomplished his pre-doctoral as well as his post-doctoral trainings at the National Institute for Deafness and Communication Disorders, NIDCD/NIH. In 2009 he joined the Cincinnati Children’s Hospital Medical Center, and University of Cincinnati, Cincinnati, Ohio as an Assistant Professor of Ophthalmology, Otolaryngology and Human Genetics. He was subsequently promoted to Associate Professor with tenure in 2013. In July 2014, Dr. Ahmed joined the University of Maryland as an Associate Professor of Otorhinolaryngology, Ophthalmology and Biochemistry. In July 2016, Dr. Ahmed was promoted to Professor rank. Dr Ahmed’s scientific accomplishments have earned several national and international awards, including Career Development Award by the RPB Foundation and a Medal of Honor by the President of Pakistan. He has been continuously funded as a principal investigator since 2007.
Dr. Ahmed long-term goal is to understand how the retinal and inner ear sensory epithelia develop and function. His lab study inherited human disorders of retina and inner ear, like Usher syndrome (USH) and Oculocutaneous Albinism (OCA) to improve our understanding of these organs at the molecular level, to study the pathophysiology of these disorders in animal models for the purpose of developing new strategies to prevent and treat these neurosensory disorders. The studies under investigation are designed to answer the following broad questions: What are the precise mechanisms of various forms of hearing and vision dysfunction? What are the genetic factors that determine light sensitivity? How do the pathogenic mutations in disease-causing genes affect the ear, eye and skin structure and function? And which molecules or genetic factors can exacerbate and/or mitigate the effects of disease-causing genes? For these studies, families segregating inherited USH and OCA are being collected. Mutant mouse and zebrafish models have been developed and his lab evaluates them to understand the function of new proteins. Functional analysis of the newly identified genes associated with deaf-blindness and OCA promises new insights into the molecular mechanisms of vision and auditory development and functions and will facilitate the rational design of potential therapies.